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Abstract. A key characteristic of scientific research is that the entire experiment (or series
of experiments), including the data analyses, is reproducible. This aspect of science is
increasingly emphasized. The Materials and Methods section of a scientific paper
typically contains the necessary information for the research to be replicated and
expanded on by other scientists. Important components are descriptions of the study
design, data collection, and statistical analysis of those data, including the software used.
In the Results section, statistical analyses are presented; these are usually best absorbed
from figures. Model parameter estimates (including variances) and effect sizes should
also be included in this section, not just results of significance tests, because they are
needed for subsequent power and meta-analyses. In this article, we give key components
to include in the descriptions of study design and analysis, and discuss data interpretation
and presentation with examples from the horticultural sciences.

This article provides recommendations
for statistical reporting in a research journal
article. Appropriate and informative report-
ing, and the wise use of statistical design and
analysis throughout the research process, are
both essential to good science; neither can
happen without the other. In addition, many
journals now require access to original data
and the code used for analyses. This article is
not a statistics tutorial; we do not explain how
to do any of the statistical methods men-
tioned. There are many, many papers and
books that provide that information; some are
cited in our reference and selected reading
section. Instead, we give guidelines for hor-
ticultural scientists on how best to incorpo-
rate and present statistical information in a
scientific paper. We also focus on experi-
mental rather than observational studies. To
do the latter justice would require greatly
expanding this article, and the majority of
papers published by the American Society for
Horticultural Scientists are experimental
studies. A very useful complementary article
is by Onofri et al. (2010), which gives
specific advice for many issues we treat only
generally.

This paper is divided into two sections, as
follows:

Section 1. When Are Statistics Needed and
What Is the Purpose of Statistics in a Re-
search Paper?
Section 2. Recommendations for Writing
about Statistics in a Research Paper

� What Goes in the Materials and Methods
Section?

� What Goes in the Results Section?
� Additional Details and Descriptions

about Design, Data Collection, and
Analysis

� Pointers for Writing about Statistics for
the Horticultural Sciences

� Literature Cited and Selected References

Section 1: When Are Statistics Needed and
What Is the Purpose of Statistics in a

Research Paper?

The scope of horticultural research is
large and not all studies require statistics.
For example, anatomical and morphological
studies can be purely descriptive. With that
said, these kinds of descriptive studies are a
subset of observational studies, which also
include studies at the genomic, ecologic, and
landscape level. For observational studies,
there are useful methods for determining
associations, clusters, and dimension reduc-
tion, to name a few, that are statistics based.
In this article we focus primarily on research

questions that require inferential statistics.
Typically, using designed experiments when
addressing a research question requires ex-
periment planning, data collection, and sub-
sequent statistical analysis, and the following
recommendations are applicable.

The statistical section in an article serves
five general functions. First, the design, data
collection, method of analysis, and software
used must be described with sufficient clarity
to demonstrate that the study is capable of
addressing the primary objectives of the re-
search. When adequate information is pro-
vided, it allows for an informed peer review
and for readers, in principle, to reproduce the
study, including the data analysis. Second,
authors must provide sufficient documenta-
tion to create confidence that the data have
been analyzed appropriately. This includes
verifying required statistical assumptions
and justifying choices—such as the chosen
mean comparison procedure and any other
method that might affect results and conclu-
sions, such as controlling for experimental-
wise error. Experiment-wise error rate (or
family-wise error rate, depending on how
family is defined) is the probability of com-
mitting at least one Type I error throughout
the whole experiment. Although the error
rate for an individual hypothesis test may
be small, if one tests many hypotheses, one
becomes more likely to declare false signif-
icance for at least one. If the tests are not
independent (e.g., using the same plants to
test multiple attributes or over time, as is
common in this field), this can increase the
experiment-wise error rate. For example, if a
plant in one treatment group is diseased, this
will affect all the (correlated) measures of
that group, and thus all hypotheses tests.
Third, data and their analyses must be pre-
sented coherently. The statistical model and
analysis should naturally follow from the
study design, and be consistent with relevant
characteristics of the data, such as the un-
derlying sampling distribution (e.g., normal,
Poisson, binomial). Figures and tables should
illustrate, and be consistent with, impor-
tant results from the analysis. Fourth, readers
should not have to guess which scientific
questions the analysis answers. Effects
deemed statistically significant must also
be shown to be biologically/economically
important. Effects of potential biologic/
economic importance but whose statistical
significance is not supported by the data
should also be reported. There is an implicit
assumption of adequate power when discus-
sing results from any statistical tests. Power
is estimated during the design phase using
results from previous experiments or param-
eter estimates from the literature. Fifth,
readers should be able to use information
in the statistical reporting section as a re-
source for planning future experiments.
Variance estimates are especially important
for this function.

The goal of this article is to provide an
overview of how best to communicate statis-
tics used in horticultural research. Therefore,
it does not include specifics to address every
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contingency. Statistical methods continu-
ously change, with new methods developed
to address advances in biologic and ecologic
research. For many studies, traditional and
familiar methods (a.k.a. ‘‘standard statis-
tics’’) are adequate. However, for other stud-
ies, newer, less familiar methods are
preferable, if not essential. Use of newer
methods should not be an obstacle for publi-
cation.

Section 2: Recommendations for Writing
about Statistics in a Research Paper

The following sections outline key points
that should be addressed in the Materials and
Methods section, and in the Results section of
a journal article. Kramer et al. (2016) docu-
ment common statistical problems for a
sample of horticultural articles and should
be used as a checklist of mistakes to avoid.
The work by Reinhart (2015) is not overly
technical and it explains many of these issues
and other mistakes further, mostly in a bi-
ologic context.

What goes in the Materials and Methods
section?

Broadly speaking, there are two main
statistical areas that the Materials and
Methods section should address: 1) how
was the study designed and 2) how were the
data analyzed. Recommendations are group-
ed by subtopic.

Design and data collection.
� The main idea of this section is to provide

all information relevant to subsequent
statistical analysis and interpretation about
the design—specifically, how the experi-
ment was conducted, how the data were
collected and subsequently handled up to
the point when the data were ready for
statistical analysis. These are detailed
next.

� Describe the design. There are two com-
ponents of experimental design: the ex-
periment design and the treatment design.
Both must be described.

� The treatment design refers to the orga-
nization of treatment factors. Factorial
designs (e.g., varieties · potting substrate)
and dose–response (e.g., amount of nutri-
ent applied) are familiar examples.

� The experiment design refers to how the
experimental units were organized and
how randomization was done. Familiar
examples are the completely randomized
design (CRD) and randomized complete
block design (RCBD). Any restrictions on
randomization (e.g., blocking) or other
ways observations were grouped must be
described; this is part of the experiment
design.

� Describe covariates, if any. Provide the
units of replication (the experimental unit;
in other words, the smallest unit to which
treatments were assigned independently)
and the units of observation (sampling
unit). The units of replication may differ
for different factors (as they do, for ex-
ample, in a split-plot design).

� Describe how data were collected and how
samples were pooled/batched, if this was
done. Identify whether these were one-
time measurements, multiple measure-
ments on the plant/plot at the same time,
repeated measures over time, or measure-
ments on different plant characteristics.

� Provide numbers, so it is clear how many
units were in each block/group, how many
received each treatment, and so on. Total
sample size must be easily calculated, if
not given. If a power analysis was used to
determine the sample size, provide details.
If not, explain how the sample size was
determined. For example, one could write:
‘‘Growth chambers were limited to 30
plants, and three growth chambers were
available. Previous studies using a similar
setup and similar plant numbers had no
difficulty detecting even moderate differ-
ences in growth patterns.’’

� Identify which variables are dependent
(i.e., the response variables one measures,
such as yield, biomass, time to flowering,
elemental concentration) and which are
independent (see the previous description
of treatment design).

� Describe any transformation of variables
(e.g., logarithmic transformation) and the
reason it was needed; this applies to both
dependent and independent variables. Of-
ten, dependent variables can be fit without
transformation if the appropriate sampling
distribution is specified in a generalized
linear model. When this is possible, gen-
eralized linear models are preferable to
variance stabilizing transformations.
Data analysis. Broadly speaking, data

analysis includes the following steps:

1. Plot the original data to visualize what
has happened in terms of treatment ef-
fects, distribution of data, and other
features of the data deemed to be im-
portant.

2. Determine a statistical model consis-
tent with the study design and the dis-
tribution of the data, and mean
comparison procedures needed to ad-
dress the objective of the research.

3. Determine the statistical assumptions
associated with the selected model.

4. Select the software to be used to im-
plement the analysis.

5. Run the analysis and verify that the
assumptions are satisfied.

6. Report in the Materials and Methods
section how the previous steps were
completed.

7. Report the outcome of the analysis in
the Results section.

What goes in the Results section?
There is no one-size-fits-all way of pre-

senting the results of a statistical analysis.
This is true for many aspects of using
statistics in horticultural science, making it
impossible to give advice covering every
situation; instead, we provide general guide-
lines. Authors must decide what best tells the
story of their research results. Tables and

figures are common methods of presenting
data results. The following are principles to
follow:

� If you include graphics showing the data,
presenting data summaries, or depicting
results from modeling, the intent is to
portray the findings of the research accu-
rately and make it easier for readers to
visually understand the data, estimates
and findings from the analysis.

� Statistics that appear in both figures and
tables should be consistent with the way
the data were analyzed. If objectives are
addressed using descriptive statistics, then
these should appear in a figure or table,
along with their appropriate measures of
variability.

� If the objectives are addressed using a
statistical model, as is usually the case,
then statistics obtained from the model
should appear in the figure or table, along
with their appropriate measures of vari-
ability.

� For modeling results and hypothesis
testing, there are two main categories of
output from statistical software that should
be presented: 1) diagnostic information
demonstrating that the method and statis-
tical model used are appropriate and 2)
parameter estimates and hypothesis tests
that bear directly on the research objec-
tives. The connection to the research ob-
jectives must be clear for each statistical
result (do not simply copy results pro-
duced by software). Two other categories
of statistical results should be considered:
1) estimates of quantities from the model
that may be useful in future research (e.g.,
variance estimates) and 2) statistical sup-
port for unexpected findings.

� Demonstrate that model assumptions were
satisfied (this could be just a sentence for
simple models). See the previous point.

� For multiple dependent variables, give the
correlations among these variables [and
possibly the correlations separately for each
treatment if the treatments affect the cor-
relations (discussed later)]. Experiment-
wise error control may be necessary.

Additional details and descriptions about
design, data collection, and analysis

Statistics for the Materials and Methods
section. The Materials and Methods section
should address the first function given in
Section 1. The design, data collection,
method of analysis, and software used must
be described clearly. When choices were
made or when nonstandard procedures were
used must be justified.

Description of the study design. This
means ‘‘design’’ as broadly defined. If data
were collected, whether from an observa-
tional study, a survey, or a designed experi-
ment, there was a design. At a minimum, all
designs include three elements: The first is
the response variable (i.e., the outcome or
outcomes measured), the second is the treat-
ment design (i.e., the treatments or conditions
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being evaluated), and the third is the design
structure of the experiment, which includes
the units of replication (called the experi-
mental unit in designed experiments), the
units of observation (called the sampling unit
in designed experiments), and grouping of
units, if any. Grouping may consist of block-
ing, research conducted at multiple locations,
or data collected on multiple occasions.

The following are three scenarios to
illustrate these points. Scenario 1: Suppose
there are plants in flats on a bench. If
treatments are assigned randomly and ap-
plied to the bench, the bench is the experi-
mental unit. If observations are made on the
flat, then the flat is the unit of observation
(sampling unit). This is a CRD. Scenario 2: If
treatments are assigned randomly to individ-
ual flats within each bench, then flat is the
experimental unit. Bench is a blocking factor.
If observations are made on the flat, then the
flat is the unit of observation. Notice that the
experimental unit and the sampling unit can
be identical. This is not the case in scenario 1.
This is an RCBD. Scenario 3: Experiments
with factorial treatment designs often have
different-size experimental units for different
factors. In this scenario, irrigation or nutri-
ents are applied using drip lines across a
bench, but each bench has several flats, with a
different variety in each flat. Here, bench is
the experimental unit with respect to irriga-
tion/nutrient and flat is the experimental unit
with respect to variety. In design language,
this is a split-plot experiment, with the bench
as the whole-plot experimental unit, irriga-
tion/nutrient is the whole-plot treatment fac-
tor, flat is the split-plot experimental unit, and
variety is the split-plot treatment factor. See
Onofri et al. (2010) for another good example
illustrating true and pseudo-replication.

Important note: Although it is acceptable
to name the design, such as an RCBD or Latin
square design, a name alone is insufficient
and may be misleading. So regardless of
whether a design name is used, authors must
give the treatment factors, the experimental
units, sampling units, and the blocking crite-
ria (if any). For example, an RCBD may or
may not have treatments replicated in each
block. If treatments are replicated, one can
test whether a treatment effect is the same in
all blocks; if not, one has to assume it is. So,
‘‘RCBD’’ does not contain all the necessary
information about the design.

Data collection. This means list the re-
sponse variables measured and describe how
each was measured. It is also beneficial to
make various plots of the original data to
determine if there is a treatment effect (these
plots are not necessarily included in the
published paper). The biology should lead
the statistics. Beyond this, you are looking for
two things. When you describe the response
variable, you want to focus on the sampling
distribution of the response variable because
this affects the model selected for the analysis
of the data. You should plot the response
variable against the predictor variables and

look for recognizable patterns—in particular,
to determine if (and how) variability changes
systematically with the mean. For example,
these may be scatterplots or boxplots. An-
other useful plot groups observations in a
natural way (say, by treatment combination)
and plots the means of the groups against
their standard deviations. Many statistical
methods assume the response variable is
normally distributed, in which case variabil-
ity should be roughly the same throughout the
range of the response variable. A histogram
of the residuals from the appropriate model
with a normally distributed response variable
results in a bell-shaped distribution. Note that
a histogram of the raw response variable
should not have a bell-shaped distribution
because, if there really are treatment effects,
the histogram should have a peak at each
treatment mean.

Many commonly measured response vari-
ables in horticulture have a non-normal
distribution. For example, germination rate
(number of seeds germinated successfully/
the number planted) has a binomial distribu-
tion. Many variables are continuous but have
strongly right-skewed distributions, such as
berry weight. A log-normal distribution often
works well for this response variable. Gen-
eralized linear models allow the data to arise
frommany processes; the normal distribution
is just one of several. Others include the log-
normal, gamma, exponential, beta, binomial,
Poisson, and negative binomial. The latter
three are used to model count data. Again,
plots used to assess the data and suggest
models are part of your toolbox for deter-
mining the formal statistical analysis you will
conduct, but usually are not included in an
article.

The second thing you are looking for is
any aspect of the data collection process that
might affect the structure of the experiment
design. Milliken and Johnson (2009) give
examples in which the data collection process
alters the study design. In one example,
plants were grown in multiple distinct blocks,
but then material for each treatment was
combined from all blocks to allow measure-
ment of the micronutrients of interest. The
original blocks were legitimate replicates,
but combining material precludes estimating
block-to-block variability, effectively creat-
ing an unreplicated experiment. For this
reason, a clear description of the data collec-
tion process is essential.

Model description. Model description
consists of giving the assumed distribution
of the response variable and the sources of
variation in the treatment and experiment
design.

� Scenario 1: plants assigned to benches in a
CRD. The model would simply be Re-
sponse = Treatment + Experimental error.
(Plant-to-plant variability should be the
largest contributor to the experimental error
component.)

� Scenario 2: treatments assigned to flats in
an RCBD, with benches as the blocking
criteria. The model would be Response =
Treatment + Benches + Experimental er-
ror. This model assumes the treatment ef-
fect does not differ from bench to bench.

� Scenario 3: Irrigation is the whole-plot
treatment factor, benches are the whole-
plot experimental units, variety is the split-
plot treatment factor, and flat is the split-plot
experimental unit. The model is Response =
Irrigation treatment + Whole-plot error +
Variety + Irrigation · Variety + Split-plot
error. This model assumes the irrigation ef-
fect does not differ from bench to bench and
that the variety effect does not differ from
flat to flat. [In statistical jargon, there is no
interaction between any of the fixed effects
(irrigation and variety) and any of the ran-
dom effects (bench and flat)].

Other aspects of analysis.Because of the
wide range of research subject matter and
scales (laboratory to field), we give general
principles. First, the statistical software used
to analyze the data is not the method of anal-
ysis. Authors must first describe clearly the
statistical procedures to compare or otherwise
characterize the treatments. As illustrated in the
three previous scenarios, themethod of analysis
must be consistent with the study design and
data collection process. If there are assump-
tions critical to the validity of the method of
analysis used, authors must state that the
assumptions were met and how those assump-
tions were verified. If it is unclear what the
assumptions are or how to verify them, talk to
a statistician. Third, there must be a clear
connection between the statistical methods
used and the primary objectives of the re-
search. This is where treatment design comes
in, and it is important to match how you
compare the treatments with the treatment
design. For example, if you are comparing
different varieties, then a mean comparison
test is appropriate. Depending on the relative
seriousness of Type I (false positives) and
Type II (false negatives) errors, there are
different ways to implement a means compar-
ison test. At one extreme are two tests: Duncan
multiple ranges test and an unprotected least
significant difference test, neither of which
control Type I error. At the other extreme are
Scheff�e and Bonferroni tests, which offer
extreme control of Type I error at the expense
of Type II error. There is a time and place for
each test. Authors must state which procedure
was used and why that procedure was chosen.
The treatment design for experiments yielding
genomic data is often simple, but the analyses
are complicated. When analyzing RNAseq
and similar genomic data, controlling for false
discovery rate (which is also a multiple-
comparisons issue) is similarly important.

In addition to factorial treatment designs
[when main effects (factors with discrete
levels) and their interactions are important],
regression (when one or more predictor vari-
ables are continuous) is often used in horti-
culture. In some cases, continuous predictor

HORTSCIENCE VOL. 54(9) SEPTEMBER 2019 1607



variables are observational in nature. They
are often called covariates in designs that also
have factors. The distribution of the response
variable needs to be stated because that
distribution, in part, determines which statis-
tical model is appropriate.

When the assumptions underlying a para-
metric method are violated, ‘‘nonparametric’’
methods should be used. These are not
assumption-free; one assumption is that the
response variable has the same sampling
distribution across treatments (e.g., always
skewed to the right).

Ratios constructed of two randomvariables
(e.g., root mass/aboveground mass) have poor
statistical properties (the assumptions of a
parametric test are often violated because the
variance of the ratios is not well determined).
If ratios need to be used in an analysis,
consider obtaining advice from a statistician
familiar with the analysis of ratio data.

The trend in biological, medical, and
social sciences journals is also to report effect
sizes rather than simply the results of a
significance test [see Nakagawa and Cuthill
(2007) for a readable justification and con-
crete suggestions]. This now required in
many journals (Tressoldi et al., 2013).

With software improvements, Bayesian
statistical methodology is gaining acceptance
among biologists. In certain cases, such as
models with layers of random effects, Bayes-
ian methods enable analyses that would other-
wise not be possible. In simpler models, there
is often not much difference between results
from Bayesian and frequentist (‘‘traditional’’)
statistical analyses unless there is relevant
prior information that improves the accuracy
and precision of parameter estimates. Findings
based on the use of Bayesianmethodology are,
in principle, acceptable in most biological
journals, although require more explanation
for readers to understand the results.

It may not be clear at the onset of an
analysis which statistical methodology should
be used, and several different kinds of ana-
lyses may be done with the same data set to
determine which one makes the most sense.
For example, diagnostics following fitting a
model may suggest that the assumptions are
not met. Alternative models may be exam-
ined to determine whether they fit the data
better. This is not a free pass to try models
until one finds the results one desires. Rather,
one oscillates between fitting models and
judging them using diagnostics until one
is satisfied that one has selected a model
that both captures the essential features of
the data and has its assumptions satisfied. A
useful discussion on obvious and not-so-
obvious biases resulting from such a path is
given by Gelman and Loken (2014). Note
that if two reasonable statistical models give
contradictory conclusions, authors could pres-
ent both, as long as sufficient information for
the reviewers and readers to understand the
issue is provided.

Statistical software. After authors have
described the method of analysis, following

guidelines given previously, then any soft-
ware used for statistical analyses should be
cited, including online software. Include the
version (the release) in the citation. Software
developed by the authors for the analysis and,
thus, not generally available should be
explained sufficiently (perhaps in an appen-
dix) for readers to understand what it does
and why off-the-shelf software was not suit-
able. Authors must make the software avail-
able for others to use upon request and should
include well-documented copies of the code
for the reviewers. If the software was part of a
system, such as SAS� or R, authors must also
give the specific procedure used, such SAS
PROC GLIMMIX or the lme4 package in R.

Statistics for the Results section. As with
the method of analysis, there is no one-size-
fits-all rule for presentation of data and
associated formal statistical analysis. Again,
we provide general principles.

First, data should be presented so that the
relevant information with regard to the
study’s primary objectives and most impor-
tant findings are clear. Presentation may be
via figures or tables, as long as these figures
or tables inform rather than inadvertently
hide or distort important information. In
general, a picture is worth a thousand num-
bers. Well-conceived figures tend to portray
the data’s important messages more under-
standably than tables.

If multiple responses are measured on the
same sampling unit, such as weight, height,
sugar content, and macro- and micronutrient
content in a plant, correlation among these
variables is likely and should be accounted for
in the analysis (this is a kind of repeated-
measures design) and correlation coefficients
should be provided. Note that these correla-
tions may change with different treatments or
environments, just as mean responses may, so
a single set of correlation coefficients may not
summarize adequately the relationships among
the variables in the experiment. If multiple
responses aremeasured, experiment-wise error
control may be needed. The same consider-
ations for balancing Type I and Type II error
rates could be applied here, as mentioned
earlier.

Anytime means are compared, the stan-
dard error of the differencemust be reported.
In most cases, the standard error of a mean
can be considered optional. This is admit-
tedly a break with tradition, but it is an
essential one. A plot depicting means with
standard error bars is, by itself, insufficient.

Formal statistics. Formal statistics include
results of hypothesis tests (e.g., F or t statistics,
P values), results of mean separation tests,
estimates of means, differences, regression co-
efficients and their associated standard errors or
confidence intervals, predicted values and their
associated prediction intervals, and so on. In
general, providing the mean (or mean differ-
ence) and its confidence interval is preferable
to reporting only the results of a hypothesis
test. Formal statistics should accompany and
provide support for, but not substitute for,
the depictions of the data described earlier.
The American Statistical Association issued a

policy statement in 2016 (Wasserstein and
Lazar, 2016) that clarifies legitimate vs. illegit-
imate uses and interpretations of P values
associated with hypothesis tests. P values tell
us whether the observed differences in the data
are likely the result of chance or whether there
is strong evidence of a true difference. They
cannot tell us whether the difference is big
enough to matter.

The main message should be that the
observed difference is biologically, econom-
ically, or scientifically consequential, not that
a P value was statistically significant. If the
treatment group differs significantly from the
control group, the emphasis should be on
the biological consequences of finding a
difference of that magnitude. If a regression
line has a significant slope, the emphasis
should be on the functional relationship
between the independent and dependent vari-
ables.What underlying biological principle is
responsible for a slope of this size? Let
biology lead and let significance tests follow.

Often, not finding a statistically signifi-
cant difference is important and should be
reported if there was sufficient power to
detect a biologically important difference.
For example, if a study is done on the
assumption (perhaps based on conventional
wisdom or a previous research report) that a
treatment difference exists, and data from a
new study suggest otherwise, that informa-
tion should be reported. Journals do science a
major disservice by preferentially reporting
only statistically significant results. This
practice is called ‘‘publication bias’’ and is
increasingly recognized to be a serious issue
in all sciences. Sometimes a nondifference is
the most important finding.

Pointers for Writing about Statistics for
the Horticultural Sciences

Many terms have technical meanings in
statistics, as well as more general—and less
precise—uses in common language. For ex-
ample, ‘‘significant’’ has a specific definition
in hypothesis testing, but the words ‘‘signifi-
cant’’ and ‘‘important’’ tend to be used loosely
and interchangeably when describing scien-
tific results. It is best to avoid ambiguities
in your writing (What is the meaning of
‘‘significant findings?’’) Instead, describe the
difference. For example, for a dry weight
measurement, treatment A resulted in a
heavier plant than treatment B. Commonly
used statistical terms (e.g., analysis of vari-
ance) do not need to be defined in the article.
Less common ones (e.g., reliability) do need
accompanying definitions. If a reference needs
to be given for a statistical technique, refer to
an easily available (and commonly used)
textbook if possible. The second choice would
be an article in a horticulture or other bi-
ological journal. The third choice is a review
article that explains the technique and perhaps
compares it with others. The last choice is an
article in the statistical literature that requires
an advanced background in statistical theory.

Readers of an article may have a different
reason for looking at results than the author’s
stated purpose (e.g., to compare some of the

1608 HORTSCIENCE VOL. 54(9) SEPTEMBER 2019



results in the article with data readers have
from a location they use, rather than the
within-location comparison of cultivars in
the article), which is another reason why
summary information about the original data
(e.g., means and standard deviations) needs
to be provided. Data summaries may also be
used in a subsequent meta-analysis; these
typically use means, standard deviations,
and other estimated parameters (e.g., block-
to-block variance).

Statistics, and figures and tables. Scien-
tific publications are replete with tables,
figures, and plots that are easy to read,
technically impressive, pretty to look at,
but, unfortunately, can be misleading in their
content with respect to the objectives of the
research they are intended to portray. If a
figure shows the results of statistical model-
ing (e.g., means and their standard errors),
you should try including the original data in
the figure, perhaps in the background. This
helps readers assess the adequacy of the
statistical model visually. Rather than reiter-
ate the advice of others, we suggest an
excellent source for describing how data
(and legends) should be presented: How to
Report Statistics in Medicine (Lang and
Secic, 2006; pp. 325–393).

Plant scientists are not expected to know
everything when conducting research, and
this is becoming more evident with increas-
ing collaborations across fields of study.
Plant scientists should know, however, when
they need input from a statistician. If so, we
advise meeting with a statistician before
setting up the experiment. A statistician will
not be able to help after data from a poorly
designed experiment are collected (other than

to suggest rerunning the experiment with a
better design).

A well-designed experiment can often be
analyzed a number of ways and, usually,
there are choices to make along the way.
Examples include whether there is over-
dispersion, whether interaction terms are
necessary, or whether a multivariate analysis
should be considered to account for correla-
tion among response variables. Should the
statistician be extensively involved in the
design and analysis, they should be included
on the grant and/or the resulting journal article.

The following references are excellent
sources for additional information about the
statistical topics described in this article.
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